Activins are expressed in preimplantation mouse embryos and in ES and EC cells and are regulated on their differentiation.

نویسندگان

  • R M Albano
  • N Groome
  • J C Smith
چکیده

Members of the activin family have been suggested to act as mesoderm-inducing factors during early amphibian development. Little is known, however, about mesoderm formation in the mammalian embryo, and as one approach to investigating this we have studied activin expression during early mouse development. Activins are homo- or heterodimers of the beta A or beta B subunits of inhibin, itself a heterodimer consisting of one of the beta subunits together with an alpha subunit. Our results indicate that the oocyte contains mRNA encoding all three subunits, and antibody staining demonstrates the presence of both alpha and beta protein chains. From the fertilized egg stage onwards, alpha subunit protein cannot be detected, so the presence of beta subunits reflects the presence of activin rather than inhibin. Maternal levels of activin protein decline during early cleavage stages but increase, presumably due to zygotic transcription (see below), in the compacted morula. By 3.5 days, only the inner cell mass (ICM) cells of the blastocyst express activin, but at 4.5 days the situation is reversed; activin expression is confined to the trophectoderm. Using reverse transcription-PCR, neither beta A nor beta B mRNA was detectable at the two-cell stage but transcripts encoding both subunits were detectable at the morula stage, with beta B mRNA persisting into the blastocyst. We have also analyzed activin and inhibin expression in ES and EC cells. Consistent with the observation that activins are expressed in the ICM of 3.5-day blastocysts, we find high levels of beta A and beta B mRNA in all eight ES cell lines tested. F9 EC cells express only activin beta B, together with low levels of the inhibin alpha chain. When ES and EC cells are induced to differentiate, levels of activin fall dramatically. These results are consistent with a role for activins in mesoderm formation and other steps of early mouse development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 117 2  شماره 

صفحات  -

تاریخ انتشار 1993